β-Catenin modulation in neurofibromatosis type 1 bone repair: therapeutic implications

Saber Ghadakzadeh,*† Peter Kannu,*†‡ Heather Whetstone,* Andrew Howard,‡§ and Benjamin A. Alman,*†‡§,1

*Division of Developmental and Stem Cell Biology and †Institute of Medical Science, University of Toronto, Toronto Ontario, Canada; ‡Bone Health Centre and §Division of Orthopaedic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; and 1Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA

ABSTRACT: Tibial pseudarthrosis causes substantial morbidity in patients with neurofibromatosis type 1 (NF1). We studied tibial pseudarthrosis tissue from patients with NF1 and found elevated levels of β-catenin compared to unaffected bone. To elucidate the role of β-catenin in fracture healing, we used a surgically induced tibial fracture model in conditional knockout (KO) Nf1 (Nf1fl/(lox)) mice. When treated with a Cre-expressing adenovirus (Ad-Cre), there was a localized knockdown of Nf1 in the healing fracture and a subsequent development of a fibrous pseudarthrosis. Consistent with human data, elevated β-catenin levels were found in the murine fracture sites. The increased fibrous tissue at the fracture site was rescued by local treatment with a Wingless-type MMTV integration site (Wnt) antagonist, Dickkopf-1 (Dkk1). The murine pseudarthrosis phenotype was also rescued by conditional β-catenin gene inactivation. The number of colony-forming unit osteoblasts (CFU-Os), a surrogate marker of undifferentiated mesenchymal cells able to differentiate to osteoblasts, correlated with the capacity to form bone at the fracture site. Our findings indicate that the protein level of β-catenin must be precisely regulated for normal osteoblast differentiation. An up-regulation of β-catenin in NF1 causes a shift away from osteoblastic differentiation resulting in a pseudarthrosis in vivo. These results support the notion that pharmacological modulation of β-catenin can be used to treat pseudarthrosis in patients with NF1.—Ghadakzadeh, S., Kannu, P., Whetstone, H., Howard A., Alman, B. A. β-catenin modulation in neurofibromatosis type 1 bone repair: therapeutic implications. FASEB J. 30, 3227–3237 (2016). www.fasebj.org

KEY WORDS: neurofibromin · Wnt signaling · tibial congenital pseudarthrosis · osteoblast differentiation · fracture nonunion

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by activated RAS signaling and mutations that dysregulate the NF1 protein (neurofibromin). NF1-related skeletal abnormalities are an important cause of morbidity with osteoporosis, scoliosis, and tibial dysplasia affecting more than half of affected individuals. Tibial dysplasia typically starts with anterolateral tibial bowing, characteristically progressing to a fracture that will not heal, termed a pseudarthrosis. Normal fracture healing is characterized by the deposition of new bone from osteoblasts, followed by a period of remodeling in which osteoclasts are active. At the tibial pseudarthrosis fracture site, however, is fibrous hamartoma tissue contain cells that do not undergo osteoblastic differentiation form. There is also an increase in osteoclastogenic activity at the fracture site, when compared to the healing in a normal fractured tibia (1–4). Because tibial pseudarthrosis is refractive to medical treatment, the only management options are surgical. For those continuing to experience chronic pain and impaired mobility, an amputation may be required if other treatments are not effective.

Germline heterozygous mutations of NF1 cause NF1. In some but not all NF1-related tibial pseudarthrosis, a second hit to the NF1 gene resulting in biallelic inactivation of the NF1 locus has been identified at the fracture site (5, 6). The contribution of abnormal RAS signaling in the development of NF1 tibial pseudarthrosis is well documented (7, 8). Neurofibromin (NF1 protein) is a negative regulator of the RAS-MEK signal. ERK signaling pathway and phosphorylated ERK is overactive at the pseudarthrosis site (7). NF1 mutations result in constitutive Ras activation (9) underlying the aberrant proliferation and differentiation in multiple cell types.
including pro-osteoblasts (10) and osteoclasts (11), causing tibial pseudarthrosis.

The Wingless-type MMTV integration site (Wnt)/β-catenin signaling pathway is critically important in skeletal development and repair. In the absence of Wnt-activating ligands, cytosolic β-catenin is targeted for ubiquitination through glycogen synthase kinase (GSK)-3β, and the pathway is rendered inactive. β-Catenin plays a critical role in mesenchymal differentiation to osteoblasts. β-Catenin must be precisely regulated for undifferentiated mesenchymal cells to become osteochondral precursors, with elevated or decreased levels inhibiting differentiation. In contrast, β-catenin positively regulates osteoblastic differentiation in osteochondral precursor cells (12). This plays a role in fracture repair, where early on in the process, the precise regulation of β-catenin is necessary for mesenchymal cell differentiation into osteochondral progenitors (13). Later in the process, when these undifferentiated cells are committed to an osteochondral lineage, β-catenin positively regulates osteoblast differentiation. Thus, β-catenin plays a different role in the early and late stages of repair. Because β-catenin is crucial in skeletal development and repair, we hypothesized that it may also be important in NF1 pseudarthrosis. We thus investigated the role of β-catenin in NF1-associated tibial pseudarthrosis and fracture repair in mice lacking Nfl.

MATERIALS AND METHODS

Experimental animals

Mice expressing conditional Nfl-null alleles (Nfllox/lox mice) (14) were crossed with mice expressing conditional null or stabilized alleles of β-catenin. Cathblox(ex3) mice possess loxP sites flanking exon 3 of the β-catenin gene (Cathb) that result in the conditional stabilization of β-catenin in response to Cre recombination (15). The Cathbflm2Kem mice possess loxP sequences in introns 1 and 6 of Cathb, which leads to a nonfunctional (null) β-catenin protein when subjected to Cre recombinase (16). All mouse strains were approved by the Internal Institutional Review Board at the Toronto Centre for Phenogenomics (TCP).

Adenoviral vectors

Adenoviral vectors were purchased from Vector BioLabs (Philadelphia, PA, USA). Adenoviruses expressing GFP-tagged Cre recombinase (Ad-Cre) or a green fluorescent protein (GFP)-expressing construct (Ad-GFP) was used to induce Cre recombination, or as a control, respectively. A previously generated adenovirus containing a Dickkopf-1 (Dkk1)-expressing construct (Ad-Dkk1) was used to inhibit canonical Wnt signaling locally and temporally (13, 17). The efficiency of Ad-Cre-GFP or Ad-GFP infection was measured 24 h after viral infection using a fluorescent microscope. The infection efficiency was quantified by calculating the number of GFP+ cells as a percentage of the number of total cells in the tissue culture well.

Detection of Cre-mediated recombination of floxed alleles

Cre-mediated recombination of the Nfl floxed gene was detected by using genomic PCR (14). The sequences for Nfl Cre primers are listed in Supplemental Table S1. Recombination efficiency was estimated with densitometry of PCR bands.

Tibial fracture model

A unilateral (right side) open transverse tibial fracture with intramedullary needle fixation was used as the bone fracture model, similar to that described elsewhere (13). Twelve-week-old male mice were used for these experiments. The fractures were stabilized with a 0.3 mm insect pin (Austerlitz insect pin, size 00; Entomoravia, Slavkov u Brna, Czech Republic). A preparation of either Ad-Cre-GFP or Ad-GFP (2 × 10⁶ pfu) mixed with 10 μl of Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) was injected into the induced fracture gap. For mice treated with Ad-Dkk1, 2 × 10⁶ pfu of Ad-Dkk1 was added to the Ad-Cre-GFP and Matrigel mixture. Ad-GFP was used as the control. The mice were euthanized and fractures harvested for analysis at various time points after injury.

Radiographic and micro-computed tomography analysis

Radiographs were obtained with a Faxitron X-ray machine (model MX20; Faxitron X-ray Corp., Tucson, AZ, USA). Micro-computed tomography (μCT) analyses were performed using a SkyScan 1174 compact μCT scanner (SkyScan, Kontich, Belgium). Images were reconstructed with the NRecon software (SkyScan) and analyzed using CTAn software version 1.13.2.1 (SkyScan). The reconstructed images were then color coded according to the bone mineral density (BMD) values measured by BMD phantom-calibrated μCT. The volume of interest for quantitative analysis was defined as extending 1 mm proximally and distally from the line of fracture within the callus region along the periosteum. At least 7 samples were used in each group for the analysis.

Histology and histomorphometry

Bone samples were harvested for histologic analysis. Tissues were fixed in 4% normal-buffered formaldehyde decalcified in 20% EDTA (pH 8.0) and then embedded in paraffin. Serial sections of 5 μm were deparaffinized, rehydrated to water, and stained with toluidine blue, safranin O, or tartrate-resistant acid phosphatase (TRAP). An average of 10 tissue sections were used to measure histomorphometric parameters of callus. The number of osteoblasts per bone surface area and the number of osteoclasts per bone surface area were counted at 2 locations per section in 6 animals in each experimental group; quantification of the cells was performed as has been described (13) and according to the standard protocols recommended by the American Society for Bone and Mineral Research (18). The region of interest was selected as containing 6 microscope fields at ×20 magnification, measuring ~1.6 mm², established at the site of fracture. Histomorphometry was undertaken as previously reported (19). Osteoblasts and osteoclasts were quantified in each sample, and the results were normalized against corresponding bone area (mm²) in the same sample.

Biomechanical torsion testing

Biomechanical torsion testing was performed on an MTS Bionix 858 materials-testing system (MTS Systems, Eden Prairie, MN, USA). The tibiae were potted proximally and distally, keeping a consistent gauge length of 7 mm with the fracture line in the...
middle. Torque was measured using a 1.4 N·m reaction torque transducer (Futek, Irvine, CA, USA) during the application of angular displacement (1° / s) until failure.

Cell culture

Bone marrow cells were extracted from mouse long bones (femora and tibiae) by flushing the long bones with α-modified essential medium (αMEM) with 1% antibiotics and antimycotics and 10% fetal bovine serum (FBS; Thermo Fisher Scientific Life Sciences, Mississauga, ON, Canada). The cells were then counted and plated in 6-well plates at a density of 1 × 10^6/well and grown for 5 d in αMEM supplemented with 10% FBS. The cells were transfected with 250 multiplicity of infection (MOI) of Ad-Cre or Ad- GFP at d 5 of the culture. One week after adenoviral infection experiment, cell viability was determined by trypan blue exclusion assay (Sigma-Aldrich Canada, Oakville, ON, Canada) (20). In brief, the medium was removed from each well, and the cells were rinsed with PBS, after enzymatic release of the adherent cells by trypsin/EDTA solution [0.025% trypsin and 0.01% EDTA (Thermo Fisher Scientific Life Sciences)] 50 μl aliquots of cell suspension from each well was incubated with 50 μl 1% trypsin blue (Sigma-Aldrich Canada) for 5 min at room temperature. Dead cells, with blue staining were counted on a hemocytometer and the percentage of viable cells was calculated as the total number of cells counted. After verifying adenoviral infection, osteogenic medium containing 50 μg/mL of ascorbic acid, 10 mM β-glycerophosphate, and 1 × 10^-7 M dexamethasone was started at d 7 and continued for 14 d to induce osteogenesis. The medium was refreshed every 48 h. For colony-forming unit (CFU) analysis, the medium was removed, the plates were rinsed with 1× PBS, and the cells were fixed with 10% formalin for 30 min and then rinsed with distilled water 3 times. For colony-forming unit fibroblast (CFU-F) analysis, the cells were stained with crystal violet (Sigma-Aldrich) solution (0.5 g/100 ml methanol) for 30 min, washed with distilled water 3 times and air dried in a fume hood overnight. To determine osteogenic differentiation and matrix mineralization by colony-forming unit osteoblasts (CFU-OBs), cells were stained with Alizarin Red stain. Fixed cells were stained with a 1 g/100 ml water solution of Alizarin Red S (Sigma-Aldrich; pH 4.1–4.3) for 30 min at room temperature. The cells were then rinsed with distilled water until all the excess unattached stain was removed and the rinsed water was clear. CFU analyses were performed by counting the number of stain-positive colonies with more than 50 cells under a light microscope.

Human samples

Primary human bone marrow cells, bone samples, or tibial pseudarthrosis tissue samples were obtained from patients with NF1 undergoing surgery for the pseudarthrosis. Bone marrow cells were also obtained from age-matched patients who did not have any known genetic disorder and were undergoing orthopedic surgery for other reasons. Human ethics approval was obtained from the Hospital for Sick Children (Toronto, ON, Canada). Cells were isolated with Ficoll Paque (GE Healthcare, Pittsburgh, PA, USA) density gradient centrifugation, according to the manufacturer’s protocol, and cultured in 6-well plates at a density of 5000 cells/well in α-MEM, GlutaMax (Thermo Fisher Scientific Life Sciences) with antibiotics-antimycotics and 10% FBS (Thermo Fisher Scientific Life Sciences). Osteogenic medium consisting of αMEM (high glucose, glutamine), 1% antibiotics-antimycotics, 10% heat-inactivated FBS, dexamethasone (1 × 10^-7 M), β-glycerophosphate (10 mM), and ascorbic acid (50 μg/ml) was used from d 7 to 24 of the culture. To modulate Wnt signaling, cells either received a single dose of 50 ng/ml of the recombinant Wnt-3a (R&D Systems, Minneapolis, MN, USA) or were treated with 250 MOI of either Ad-Dkk1 or Ad-GFP.

Protein analysis

Western blot analysis was performed in triplicate on human and mouse tissues to assess intracellular levels of β-catenin. Protein was obtained using the Reporter Gene Assay Lysis Buffer (Roche Applied Science, Indianapolis, IN, USA) and quantified by the bicinchoninic acid protein assay (Thermo Fisher Scientific Life Sciences). Primary antibodies against total β-catenin (Upstate Biotechnology, Lake Placid, NY, USA) and Actin (Calbiochem, San Diego, CA, USA) were used. Horseradish peroxidase–tagged secondary antibodies and ECL (GE Healthcare) were used to detect hybridization. Densitometry was performed with AlphaEaseFC software (Alpha Innotech Corp., San Leandro, CA, USA).

Quantitative gene expression analysis

Tissues were snap frozen in liquid nitrogen and processed with the BioPulverizer (Thomas Scientific, Swedesboro, NJ, USA). Total RNA was isolated with TRIzol Reagent (Thermo Fisher Scientific Life Sciences), according to the manufacturer’s protocol. Total RNA was reverse transcribed into cDNA with the Superscript II kit (Thermo Fisher Scientific Life Sciences) as per the manufacturer’s protocol. Target and endogenous control genes were amplified by using TaqMan primers (Thermo Fisher Scientific Life Sciences). All reactions were run in duplicate with a 7900HT Fast Real-Time PCR System (Thermo Fisher Scientific Life Sciences). Differential expression was determined using the comparative C_r method. TaqMan primers used for quantitative (q)RT-PCR are listed in Supplemental Table 2.

Statistical analysis

Results are presented as means ± s.d. Statistical analyses included unpaired Student’s t tests and 1-way ANOVA followed by Tukey’s post hoc test. Results reaching P < 0.05 were significant.

RESULTS

β-Catenin protein level is elevated in tibial pseudarthrosis tissue

Four children with NF1, diagnosed by standard criteria, and affected by tibial pseudarthrosis, were studied. Genotyping studies by Sanger sequencing, confirming an NF1 mutation, did not reveal NF1 loss of heterozygosity. β-Catenin levels in pseudarthrosis tissue were compared by Western blot analysis to adjacent unaffected bone from the same patient. Total β-catenin protein levels were 4 times higher in pseudarthrosis tissue when compared with adjacent unaffected bone tissue (Fig. 1A). Increased β-catenin protein levels were associated with an increased expression of the Wnt target gene AXIN2, indicating up-regulation of the β-catenin transcriptional activation (Fig. 1B). Tibial pseudarthrosis in a mouse was analyzed in a similar manner. The tibial diaphysis of Nf1/flox/flox mice was fractured by using a reported technique (13). Ad-Cre viral infection was used to induce
recombination in fractures from Nf1^{fl/fl} mice and verified by PCR (Supplemental Fig. 1). Western blot analysis demonstrated a loss of neurofibromin at the fracture site (Fig. 1C). Mice with deficient Nf1 at the site of the tibial fracture exhibited decreased ossification 21 d after fracture when compared with Nf1^{fl/fl} controls infected with Ad-GFP, as shown by radiographs (Fig. 1D), fracture site histology showing increased fibrocartilage (see Fig. 3B) and a μCT scan analysis revealed a less-mineralized callus (see Fig. 3C). Western blot and qPCR analyses showed that β-catenin protein and Axin2 levels were higher in the Nf1-null murine fracture site tissue, respectively (Fig. 1E).

β-Catenin is elevated during osteoblastic differentiation in neurofibromatosis

We next studied the differentiation of progenitor cells to osteoblasts using bone marrow aspirates from the iliac crest site in 4 patients with NF1. Control bone marrow samples were obtained from 4 healthy age- and sex-matched children. Equal numbers of CFU-F suggested an equal number of MSCs in the bone marrow aspirates from healthy patients and those with NF1. β-Catenin levels were at least twice as high during differentiation into osteoblasts in cell cultures from patients with NF1 compared
Figure 2. β-Catenin levels regulate osteoblastic differentiation in NF1. A) Western blot analysis (left) and densitometry (right) showing total β-catenin protein levels in cultured bone marrow-derived cells from healthy and NF1-affected individuals, treated with Wnt-3a or Ad-Dkk-1. B) Alizarin Red staining showed that Dkk-1, but not rWnt-3a, rescued matrix mineralization of cultured NF1 bone marrow MSCs. Graphs show colorimetric measurement of eluted mineral extracts stained with Alizarin Red, quantification of absorbance at 595 nm using a spectrophotometer. C) Alizarin Red staining shows that Dkk-1 suppressed mineralized matrix production of cultured bone marrow MSCs from healthy individuals. Graphs show quantification of spectrophotometer colorimetry. D) Ad-Cre-mediated recombination of the conditional Nf1 flox allele detected using genomic PCR. Recombination efficiency estimated by calculating the density of the 280 bp deletion band as a percentage of the total density of both recombinant and nonrecombinant (350 bp) bands. Mean recombination efficiency was 85% in Ad-Cre-GFP group (95% CI = 74–96%). E) Cell viability after adenoviral infection. Data from the trypan blue assay showed no significant difference in the percentage of viable cells in the Ad-GFP- and Ad-Cre-GFP-treated groups, 1 wk after adenoviral infection. F) Alizarin Red staining and release assay of Nf1−/− bone marrow MSCs differentiated in OB medium and treated with either Ad-Cre-GFP or Ad-GFP. Wnt/β-catenin was up-regulated by a single pulse of rWnt-3a treatment. Nf1−/− MSCs failed to differentiate into osteoblasts, and less mineralization was observed compared with the control. rWnt-3a treatment further inhibited mineralization in the Nf1−/− group. G) Alizarin Red staining of mouse bone marrow MSCs, differentiated into osteoblasts. The graph shows the percentage of CFU-Os in different groups compared with their controls. Nf1−/− MSCs failed to differentiate into osteoblasts as efficiently as wild-type (continued on next page)
to controls (Fig. 2A). Similar to previous reports (1, 21, 22), osteoblastic mineralization was diminished in patients with NFI cultures compared to controls (Fig. 2B, C). To evaluate the role of Nf1 in murine osteoblast differentiation, we harvested primary MSCs from Nf1lox(ex3) mice and transduced these cells with a Cre-expressing adenovirus, Ad-Cre. More than 90% of cells were infected, as quantified with fluorescence microscopy (Supplemental Fig. S3). Cre-mediated recombination of the conditional Nf1 floxed alleles occurred in 85% of the cells, as determined by PCR (95% CI, 74–96%; Fig. 2D). Data from the trypan blue assay showed no significant difference in the percentage of viable cells in Ad-GFP- and Ad-Cre-GFP-treated groups, 1 wk after adenovirus infection (Fig. 2E). We found a 50% decrease in the mineralized matrix when Nf1 was knocked down, confirmed by an Alizarin Red release assay (Fig. 2F). During differentiation, β-catenin and Axin2 levels were elevated 3-fold in samples in which Nf1 was knocked down compared to control samples (Fig. 2F). Taken together, the data show that β-catenin levels are elevated during in vitro osteoblastic differentiation in neurofibromatosis.

β-Catenin down-regulation enhances osteogenic differentiation

To investigate the functional implications of β-catenin on osteogenic differentiation in NFI, human cells were either treated with rWnt3A or infected with Ad-Dkk1. rWnt3A will increase β-catenin protein level, whereas Dkk1 will inhibit β-catenin protein levels, through modulation of the canonical Wnt pathway. Dkk-1 inhibited β-catenin, resulting in a 50% decrease in β-catenin levels, whereas treatment with rWnt3A caused a 20% increase in β-catenin (Fig. 2A). In bone marrow samples from controls, infection with Ad-Dkk-1 suppressed matrix mineralization, whereas treatment with rWnt3A increased matrix mineralization (Fig. 2B). However, the results were opposite when the identical treatments were undertaken with NFI bone marrow cells. Ad-Dkk1 infection of osteoblasts from patients with NFI resulted in a mineralized matrix, but Wnt3A had no effect on mineralization (Fig. 2C).

Next, we studied differentiation into osteoblasts in Nf1lox(ex3) mice with β-catenin levels altered by rWnt-3a. Calcified matrix production was determined by Alizarin Red staining and release assay. We found that rWnt-3a did not increase matrix mineralization in Nf1-/- osteoblasts the way it did in the control cells (Fig. 2F).

We then generated conditional mice in which we could regulate both β-catenin and Nf1. Catnblox(ex3) mice, which express a null β-catenin protein after Cre recombination (23). As a control, we also analyzed Catnblox(ex3) mice, which express a stabilized β-catenin protein levels after Cre recombination (15). These mice were crossed with Nf1 conditional knockout (KO) mice. Bone marrow cells isolated from Nf1lox(ex3), Nf1lox(ex3); Catnblox(ex3), and Nf1lox(ex3); Catnblox(ex3); Dkk1-/- were cultured and transfected ex vivo with either Ad-Cre or Ad-GFP. Bone marrow cells were plated at the same density for differentiation into osteoblasts. CFU-O numbers were quantified by counting the Alizarin Red–positive colonies (Fig. 2G). Nf1-null cultures expressing no β-catenin showed an increased number of CFU-Os vs. control cultures, whereas there was not a statistically significant difference in cultures expressing the stabilized allele. Thus, inhibition of β-catenin stimulates differentiation into osteoblasts in Nf1-deficient cells.

Reduced β-catenin levels enhance fracture healing in an Nf1 murine model

To determine the role of β-catenin in fracture repair in Nf1 in vivo, we examined tibial fracture healing in the compound mutant mice. As reported (4), inactivation of Nf1 in Nf1fl/fl mice with Ad-Cre was associated with nonunion of the fracture (Fig. 3A). Safranin O staining of the fracture site histology showed increased fibrocartilage at a time point when most of the cartilage callus was replaced by newly formed woven bone in control samples (Fig. 3B). μCT scan analysis revealed a less mineralized callus, consistent with the histologic findings of less ossification at the fracture site (Fig. 3C).

To study the effects of β-catenin protein levels on fracture healing in Nf1, we induced tibial fractures in Nf1fl/fl; Catnblox(ex3) and Nf1fl/fl; Catnblox(ex3) mice and infected the fracture sites with Ad-Cre. Tibial fractures in mice with inactivation of Nf1 and inactivation of β-catenin (Nf1fl/fl; Catnblox(ex3)) showed improved healing 21 d after the fracture, compared to Nf1fl/fl mice expressing wild-type β-catenin alleles (Fig. 3A). The amount of fracture site callus fibrocartilage was significantly reduced in these mice, confirming improved fracture healing in mice expressing low levels of fracture site β-catenin (Fig. 3B). In contrast, tibial fractures in mice with inactivation of Nf1 and stabilized β-catenin (Nf1fl/fl; Catnblox(ex3)) did not heal after 21 d (Fig. 3A). We next explored the effects of an adenovirus that expressed Dkk-1, a negative regulator of the canonical Wnt pathway, on fracture repair in Nf1fl/fl mice. Mice infected with Ad-GFP were used as controls vs. this group. Radiology and histologic findings revealed that bone repair was improved with the local application of an adenovirus expressing Dkk-1 (Fig. 3A, B). The amount of fracture site fibrocartilage was reduced to levels similar to the control. μCT scan analysis of the fracture site confirmed an increase in mineralized tissue at the fracture site (Fig. 3C).

β-Catenin levels affect osteoclasts and their number in Nf1-null fracture sites

Fracture healing is dependent on the activity of several cell types, including osteoclasts that produce new bone and those that are responsible for resorbing bone. We quantified osteoclasts. A further decrease in CFU-O number occurred with β-catenin up-regulation. β-catenin down-regulation rescued osteoblast differentiation of Nf1-/- MSCs, but a significant difference between the number of CFU-Os was not observed. Stab, stabilized. Data are expressed as means ± 95% CI of 4 human samples or 6 mice per experimental condition; in vitro experiments were performed in triplicate for each biologic human or mouse sample. *P < 0.05; **P < 0.01; ***P < 0.0001.
the respective number of osteoblasts and osteoclasts from histology sections of the healing fractures at 21 d after fracture. Osteoblasts and TRAP⁺ active osteoclasts were quantified in a region containing 6 microscope fields at ×20 magnification, measuring ~1.6 mm² in 6 different animals.

Fractures in Nf1-KO mice with different levels of β-catenin were compared. The number of osteoblasts was reduced in the Nf1-KO fracture sites. The number of osteoblasts was significantly increased in Nf1-KO fractures when β-catenin levels were knocked down, but they were decreased when

Figure 3. Reduced β-catenin levels enhance fracture healing in an Nf1 murine model. A) Representative X-ray, histology, and μCT scan of tibiae 21 d after fracture show decreased ossification in the bony callus formation in the Nf1⁻/⁻ and Nf1²/² tibiae. β-Catenin stabilized fractures, with a gap and a significant amount of fibrocartilaginous tissue remaining at the fracture site. B) Histomorphometry analysis shows a significant amount of fibrocartilaginous tissue formation at the site of fracture in Nf1⁻/⁻ mice, which was eliminated by β-catenin down-regulation in transgenic Nf1⁻/⁻ and β-catenin-KO mice, and also those with Dkk-1 applied at the site of Nf1⁻/⁻ fractures. C) μCT scan analysis revealed that Nf1⁻/⁻ and Nf1²/² β-catenin-stabilized (β-catenin Stab) fractures produce significantly larger, less mineralized calluses than do their controls. This phenotype was rescued by β-catenin down-regulation in both β-catenin-KO and Ad-Dkk-1-treated Nf1⁻/⁻ groups, evidenced by higher bone volume/total volume (BV/TV) and higher BMD of the calluses. Data are expressed as means ± 95% CI of 7 mice per experimental condition. ***P < 0.0001.
β-catenin was elevated (Fig. 4). The number was significantly increased in Nf1-null fracture sites, but decreased when β-catenin levels were reduced.

β-Catenin inhibition improved torque and stiffness of Nf1-deficient fractured tibia

Biomechanical testing of fractured tibiae was undertaken to determine differences in torsional strength. We compared Nf1-deficient fractures with those also treated with Dkk-1 or those that expressed conditional null alleles of β-catenin. There was a significant increase in both ultimate torque and stiffness in Nf1-deficient fractured tibiae with low levels of β-catenin (Fig. 5). Thus, in addition to altering histologic characteristics, inhibition of β-catenin improves in the mechanical characteristics of bone healing in NF1.

Figure 5. β-Catenin down-regulation improves torque and stiffness of Nf1-deficient fractured tibia. Biomechanical testing of fractured Nf1−/− mouse tibiae revealed a significant increase in torsional stiffness after β-catenin down-regulation at the site of fracture (n = 7, means ± 95% CI). ***P < 10^-3.
DISCUSSION

In this study, the β-catenin protein level was elevated in NF1-related pseudarthrosis. In mice lacking Nf1, fracture repair was associated with poor osteogenesis and low mineralized matrix production. There was substantially more hypertrophic cartilage at the murine fracture site 21 d after fracture in cases lacking Nf1 than in the controls. This observation is consistent with a change in the fate of mesenchymal precursor cells, inhibiting osteoblastic differentiation. Reducing β-catenin levels at the murine Nf1-KO fracture site enhanced fracture healing in vitro. Thus, the fracture repair phenotype is partially mediated by dysregulated β-catenin.

One possibility is that Nf1 directly regulates β-catenin, causing the observed phenotype. For example, a downstream component of RAS, the serine/threonine kinase AKT, can regulate β-catenin-dependent transcription by inhibiting GSK-3β, by directly activating β-catenin, or by both mechanisms (24–27). However, it is also possible that differences in β-catenin levels are not directly regulated by Nf1, but instead are a consequence of differences in cell differentiation, as mesenchymal cells in a less differentiated state may be characterized by higher β-catenin levels (28–31). Thus, a shift away from osteoblasts to undifferentiated mesenchymal cells could be responsible for the observed increase in β-catenin at the fracture site.

During the initial phases of fracture repair and during development, β-catenin needs to be precisely regulated for cells to become osteoblasts (12, 32). Our data suggest that NF1 tibial pseudarthrosis is at least in part caused by elevated levels of β-catenin preventing osteoblastic differentiation. Once cells are committed to the osteochondral lineage, deletion of β-catenin blocks osteoblast differentiation, shifting the process to chondrocyte formation. Thus, later in fracture repair, β-catenin could improve osteogenesis, but this can occur only if the appropriate osteochondral precursors are present. Our data support the notion that there is a deficient number of these precursors in NF1, because of the high levels of β-catenin. Thus, the phenotype we observed in NF1 pseudarthrosis is consistent with activation of β-catenin, leaving more undifferentiated mesenchymal cells and fibrous tissue at the fracture site.

Studies of impaired bone repair in NF1 have often focused on isolated signaling cascades without taking other relevant signaling pathways into account. Activation and maintenance of osteoblastogenesis is governed by a sophisticated network of partially converged pathways. Inhibition of TGF-β signaling has been shown capable of rescuing the nonunion and bone defects in a mouse model of NF1 (33). The reciprocal and synergic effects of Wnt/β-catenin and TGF-β signaling pathways in the differentiation of MSCs to osteoblasts and chondrocytes (34–36) could explain the defective NF1 pseudarthrosis phenotype. Van den Bosch et al. (37) also showed that Wnt/β-catenin stimulation skewed TGF-β signaling, resulting in chondrocyte hypertrophy, suggesting an alternative explanation for the abundance of hypertrophic chondrocytes in the defective NF1 pseudarthrosis tissue and at the site of fracture in NF1 murine models. On the other hand, hyperactive Ras/MAPK signaling has been identified as a critical factor underlying the pathogenesis of NF1 pseudarthrosis and impaired fracture repair in NF1 mouse models (7). Activation of Ras signaling has been associated with LDL receptor protein-6-mediated activation of Wnt/β-catenin in colorectal cancer (38) and activation of another member of the MAPK family, Rac1; control Wnt activation; and β-catenin nuclear localization during osteoblast differentiation (39). Our results from the Ad-Dkk1 treatment experiments also support the concept of receptor-mediated activation of Wnt/β-catenin in NF1 fracture healing. Moreover, Rac1 has also been identified as a critical contributor in hyperactive osteoclasts in Nf1 haploinsufficient mice (40); therefore, it could contribute to the NF1-defective osteoblastogenesis and osteoclast hyperactivity.

Osteoclastogenesis can be activated by RAS signaling, such as occurs in NF1 deficiency (5, 11, 41–50). We observed a gain in the number of osteoclasts at the Nf1-null murine fracture site, in agreement with previous studies (51–57). In vitro studies have shown a biphasic effect of β-catenin on osteoclast proliferation and differentiation (58). In our experiments, reducing β-catenin levels at the Nf1-null fracture site reduced the number of osteoclasts. This decrease could be caused by direct or indirect effects of Wnt/β-catenin signaling on osteoclastogenesis, as suggested in other studies (59, 60). The potential role of β-catenin on osteoclast differentiation, particularly in NF1, warrants further research.

We demonstrated the potential utility of Dkk1 in restoring a more normal fracture-healing phenotype in NF1. The transient and targeted infection of Dkk1 at the site of Nf1-null fractures led to a greater increase in the number of osteoblasts, than knocking down β-catenin. Biomechanical testing revealed a restoration of mechanical stability to the fractured bone with an improvement in torsional stiffness and torque. Based on our data, we propose using therapy that alters β-catenin levels in clinical trials to improve bone repair in NF1 or as an adjunct for the treatment of congenital pseudarthrosis.

The authors thank the families involved in this study and the NF Society of Ontario (NFSO) for their kind contribution and participation. This study was funded by Grant W81XWH-13-1-0113 from the U.S. Army Medical Research Acquisition Activity. Author contributions: S. Ghadakzadeh and B. A. Alman designed the study; S. Ghadakzadeh and H. Whetstone analyzed the data and wrote the paper. The authors declare no conflicts of interest.

REFERENCES

24. Wu, M., Chen, G., and Li, Y.-P. (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4, 16009

in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos. Int. 16, 928–936

Received for publication December 30, 2015. Accepted for publication May 31, 2017.
β-Catenin modulation in neurofibromatosis type 1 bone repair: therapeutic implications

Saber Ghadakzadeh, Peter Kannu, Heather Whetstone, et al.

FASEB J 2016 30: 3227-3237 originally published online June 15, 2016
Access the most recent version at doi:10.1096/fj.201500190RR

Supplemental Material
http://www.fasebj.org/content/suppl/2016/06/15/fj.201500190RR.DC1.html

References
This article cites 59 articles, 17 of which can be accessed free at:
http://www.fasebj.org/content/30/9/3227.full.html#ref-list-1

Subscriptions
Information about subscribing to The FASEB Journal is online at
http://www.faseb.org/The-FASEB-Journal/Librarian-s-Resources.aspx

Permissions
Submit copyright permission requests at:
http://www.fasebj.org/site/misc/copyright.xhtml

Email Alerts
Receive free email alerts when new an article cites this article - sign up at
http://www.fasebj.org/cgi/alerts

© FASEB